

Topic 6: Natural Hazards and Risk Management

Michael Kunz

Institute of Meteorology and Climate Research (IMK-TRO) Center for Disaster Management and Risk Reduction Technology (CEDIM)

Agenda...

Extreme events...

Risk estimation: Hazard, Vulnerability, Statistics...

Disaster Risk: Concept, awareness, catastrophes...

Trends: global changes...

Risk Management: Basic concepts

CEDIM forensic disaster analyses...

Fatalities by natural hazards (1970-2012)

(WMO, 2014)

Heat wave 2003

River Rhine

L > 2000 km

Typhoon Haiyan 2013

57

" EVA JOCELYN

+FIRS

- ~ 500 km

Tornado Bützov 2015

L ~ 0.1 km

Natural Hazards: Scale Diagram

Extreme events occur on a wide range of spatial and temporal scales (atmospheric hazards: relation between the two)

Extreme Events

Definitions

- based on Impact (be careful, insurance approach)

- based on statistics (e.g., thresholds, percentiles, extreme value statistics, ...)

Example: Normal distribution
$$f(x) = \frac{1}{\sqrt{2\pi} \cdot \sigma} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$$

Risk = Hazard x Exposure x Vulnerability

Hazard I

- Intensity of extremes as a function of probability
 - Target figure: wind speed, runoff, water level, rain amount, magnitude, acceleration,...
 for a certain probability

Storm **hazard** per 1 x 1 km² p = 0.02 (return period 50 yrs) (Hofherr & Kunz, 2010)

Hazard: Probability of occurrence for a certain intensity of a certain extreme events in a certain area / location

Hazard II

- Characteristics of Extremes
 - High spatial / temporal variability
 - Superposition of long-term variability (i.e., natural climate variability)
 - Low frequency (at a certain point, area, region)

Availability of reliable observations

Damage-related winterstorms over Baden-Württemberg reconstructed from various proxy data (Hofherr und Steller, 2005)

Hazard III

- Objective: Relation between intensity and probability (return period)
- Problem: small sample sizes over a limited period of time; parent distribution not known
 - → Estimation of an appropriate cumulative distribution function (cdf)

Hazard IV

OEDIM

- Sample: Annual Maxima
- Classical extreme value statistics (Fisher & Tippet, 1928)
- Modelling by Generalized Extreme Value (GEV) distribution

$$F(x) = 1 - \left[1 - \frac{k}{\alpha}(x - \xi)\right]^{1/k} \qquad k \neq 0$$
$$F(x) = 1 - \exp\left[-\frac{(x - \xi)}{\alpha}\right] \qquad k = 0$$

Modelling by Generalized Pareto Distribution (GPD)

Sample: all maxima during a certain period (peaks over threshold, POT)

$$\lambda = n/M$$

n: number exceed.
M: number years

- α : scale parameter
- ξ : threshold

Hazard V

Hazard VI

Example: Estimation gust wind speed vs probability using different methods (cdf and parameter estimator)

Hazard VII

- Application Example: Flood Hazard in Germany, 1961-2010
- Severity Indices: Accumulation grid points $S_X^k = \frac{1}{\Gamma} \sum_{i,j} \left\{ \frac{X_{i,j}^k}{X_{i,j}^{5 \text{ yr RP}}} \right\} \left| X_{i,j}^k \ge X_{i,j}^{5 \text{ yr RP}} \right|$

Vulnerability I

Vulnerability

"The characteristics and circumstances of a community, system or asset that make it susceptible to the damaging effects of a hazard." (UN ISDR)

Many concepts of vulnerability and its causes!

Resilience

"The ability of a system, community or society exposed to hazards

- to resist, absorb, accommodate to and recover from the effects of a hazard
- in a timely and efficient manner,
- including through the preservation and restoration of its essential basic structures and functions." (UN ISDR)

Vulnerability II

Indicator-based CEDIM model for Social and Industrial Vulnerability

(Khazai et al., 2013)

Vulnerability III

Indicator-based CEDIM model for Social and Industrial Vulnerability

Example: refined petroleum products 0.529 $\infty \infty$ Sector-specific Electricity, gas and water supply 0,528 industrial transport equipment 0,424 XXXIII vulnerability chemical products 0,408 ∞ non-metallic mineral products 0,357 basic metals and metal products XXXX 0,331 rubber and plastic products 0.310 pulp, paper and paper products 0.310 KXXX food and tobacco 0.298 textiles and wearing apparel 0,295 XXXX leather and leather products 0,291 XXX wood and wood products 0,290 $\sim \sim \sim$ electrical and optical equipment 0,289 XXX machinery and equipment 0,264 manufacturing n.e.c. 0,255 KXXX E Construction 0,190 XX 0.0 0.1 0.2 0.3 0.4 0.5 Capital dependency Labour Dependency Electricity Dependency Water Dependency

Transportation Dependency Supply Dependency

Industrial Vulnerability Index IVIs

Demand Dependency

(Khazai et al., 2013)

0.6

Vulnerability IV

Indicator-based CEDIM model for Social and Industrial Vulnerability

(Khazai et al., 2013)

Risk I

- Defined by Risk formula
 - Target figure: assets, money, life,...

Storm **risk** per community p = 0.02 (Heneka & Hofherr, 2011)

<u>Risk</u>: expected loss (economic loss, fatalities) caused by a damaging event

Hazard:

Probability of occurrence for a certain intensity of a certain extreme events in a certain area / location

R = G * V * E

Vulnerability + Exposure: possible damage, which is related to an event; assets or human life affected; separation between economic and social vulnerability

Risk II

- Statistical quantity: required to
 - estimate **potential loss** for a certain portfolio (insurance business)
 - for regulation process: Solvency II requires PML200 (probable loss in 200 years)
 - to assess precautionary measures (e.g., development plans, building codes, training, shelters, early warning systems, ...)
 - to design technical protection measures (e.g., levees, retention systems, supply systems)
- Statistical quantity vs. individual awareness → role of individual & society

Disaster I

What is a disaster?

"A serious **disruption of the functioning** of a community or a society causing widespread **human, material, economic or environmental losses**

which **exceed the ability of the affected** community or society **to cope** using its own resources."

(UNISDR, 2009)

http://www.unisdr.org/we/inform/terminology

Other definitions are used, for example: an event killing *x* people.

Disaster II

- Extreme event + vulnerability + exposure = catastrophe (?)
 - Boundary condition I: Societal reactions, Societal changes
 - Boundary condition II: climate variability (natural, anthropogenic)

Disaster III: Statistics 1900 - today

Source: EM-Dat, the international disaster data base, CRED, Louvain, Belgium, www.emdat.be

28 23 July 2015 Natural Hazards and Risk michael.kunz@kit.edu

Source: Munich Re NatCatService, Topics GEO 2014

michael.kunz@kit.edu

Disaster IV: Statistics - last 30 years

Overall losses (US\$ bn) and insured losses 1980 - 2014

Overall losses and insured losses 1980–2014 (in US\$ bn)

absolute values and long term trends

Overall losses (2014 values)*

- Of which insured losses (2014 values)*
- --- Trend in overall losses
- Trend in insured losses
 - * Values adjusted for inflation using the Consumer Price Index (CPI) of each country.

Source: Munich Re NatCatSERVICE

Global change I: Population increase

Estimated and projected populations of the world and its continents (except Antarctica) from 1950 to 2100.

Projections by the United Nations Department of Economic and Social Affairs. Data is from <u>http://esa.un.org/unpd/wpp/</u> <u>unpp/panel_population.htm</u>

Global change II: Urbanisation

Global change III: Urbanisation

Rank	Name	Countriy	Continent	Million Inhabitants	Annual growth
1	Tokyo	Japan	Asia	35,68	0.60%
2	Jakarta	Indonesia	Asia	28,02	2.20%
3	Seoul	South Korea	Asia	25,60	1.40%
4	Shanghai	China	Asia	25,30	2.20%
5	Karachi	Pakistan	Asia	23,50	4.90%
6	Mexico City	Mexico	North America	23,20	2.00%
7	Delhi	India	Asia	23,00	4.60%
8	New York City	USA	North America	21,50	0.30%
9	São Paulo	Brazil	South America	21,10	1.40%
10	Mumbai	India	Asia	20,80	2.90%
11	Manila	Philippines	Asia	20,70	2.50%
12	Los Angeles	USA	North America	17,60	1.11%
13	Osaka	Japan	Asia	16,80	0.15%
14	Beijing	China	Asia	16,40	2.70%
15	Moscow	Russia	Europe	16,20	0.20%

Several Megacities highly exposed to hazards / disasters!

Global change IV: Economy

Overall losses (US\$ bn) and insured losses 1980 – 2010

Global change vs Risk

Trend losses by natural hazards (global) and after normalization considering regional differences in development

$$ND_t = D_t \times (\text{Wealth}_t)^{-1}$$

Global change vs Risk

Trend losses by natural hazards (global) and after normalization considering regional differences in development

$$ND_t = D_t \times (\text{Wealth}_t)^{-1}$$

Contributing factors for increasing disaster losses

- \checkmark population growth
- ✓ rising living standards
- spatial concentration of population and values in urban agglomerations / megacities
- ✓ settlement, land-use, industrialization of sensitive regions
- complexity of modern societies relying on technical infrastructures: growing interdependencies
- \checkmark increase of extreme events due to climate change

Disasters: statistics and trends 1900 - today OEDIM

Number of people killed in natural disasters 1900 - 2014

Number of people affected by natural disasters 1900 - 2014

Source: EM-Dat, the international disaster data base, CRED, Louvain, Belgium, www.emdat.be

Fears of Germans 2014...

Fears Baden-Württemberg 2014...

...and the Reality (fatalities)

Causes of death in Germany 2013 (note the logarithmic scale on the x-axis!)

(source: Statistisches Bundesamt 2015)

Disaster Risk Management Cycle

idea of cycle vs. long-term development ?!

Integrated Risk Management

Disaster Risk Management Research

- Requires interdisciplinary research
- Combination of
 - basic research for better understanding of natural events
 - applied research to develop technologies and / or tools that can be used in disaster risk reduction

... how can research in CEDIM contribute?

Main objectives of CEDIM:

- to advance the scientific understanding of natural and man-made hazards assessment,
- to develop disaster management solutions for the early detection and reduction of risk,
- to develop technologies and tools in the areas of risk communication, risk assessment and risk management
- To use the interdisciplinary competence / synergies and cooperate with emergency management institutions at various levels.

CEDIM — Center for Disaster Management and Risk Reduction Technology

- Founded in 2002
- **Staff:** appr. 30 scientists in 2015
- Consideration of whole process from natural disasters to engineering to impact on society

EDIM

CEDIM Forensic Disaster Analysis (FDA)

Objectives

- Identifying relevant drivers for loss and risk, "event → disaster"
- Analyzing interaction between systems and evolution of disaster over time
- infer implications for disaster mitigation

Strategy

- Collecting available information and knowledge
- Developing and applying methods and tools for rapid assessments

Research Mode

- Event-based and near-real time
- Interdisciplinary in a team

Staten Island (Railway), 2012

CEDIM FDA: Scientific Questions

- Methodology according to Integrated Research on Disaster Risk (IRDR),
- CEDIM Near-Real Time Component

Critical factors for losses (life, socio-economic, infrastructure / facilities)?

Were **preventive measures** in place / sufficient?

Critical interactions of natural hazard event, social system – technical systems?

What can be learnt from past disasters?

Role of multi-hazards or cascading processes?

...deep event analysis: interaction technique -

human – society

disciplines

...CEDIM focus: near real-time FDA

economy

infrastructure

CEDIM Forensic Disaster Analysis (FDA)

Loss estimation, shelter needs, information gaps, comparison to historic events, lessons learned... event society

CEDIM Forensic Disaster Analysis (FDA)

CEDIM FDA Nepal Earthquake

PERCEIVED	Not felt	Weak	Light	Moderate	Strong	Very strong	Sovere	Violent	Extreme
POTENTIAL	none	none	none	Very light	Light	Moderate	Mod. Heavy	Heavy	Very Heavy
PEAK ACC.(Ng)	<0.05	0.3	2.8	6.2	12	22	40	75	>139
PEAK VEL (cm/s)	<0.02	0.1	1.4	4.7	9.6	20	- 41	86	>178
INSTRUMENTAL	1	11-01	IV	V	VI	VII	VIII	1K	X

USGS

- Earthquake: Sat, 25.4.15
- First impact report by CEDIM online Monday, 27.4. evening
- >5,000 Fatalities, > 10,000 Injured
- Many government, religious and private buildings destroyed.

http://reliefweb.int/sites/reliefweb.int/files/resources/ Nepal%20Worst%20hit%20districts.pdf

CEDIM FDA Nepal Earthquake

First rapid (!) estimation of economic loss (as of 27 April 2015):

- Damage 3-3.5 bn USD (CATDAT, James Daniell)
- Replacement cost totaling over 25% of the GDP

Focus of 2nd / 3rd reports

- Impact: social, general, economy, indirect damage
- Remote mountain areas: information, accessibility
- Landslides (destabilized slopes, upcoming monsoon season)
- Displacement and shelter

CEDIM Forensic Disaster Analysis

- Development of models and methodologies for rapid assessment of ongoing catastrophes (direct & economic losses, fatalities, shelter models, early warning systems, information gap analysis, causal loss analysis,...)
 - event-based event-based ig systems, s,...) R&D development models & methodologies
- New: International Center of Excellence (ICoE) IRDR

TaskForce

Conclusions

- Large range of temporal & spatial scales/variability of extreme events; relevant for impact, but also protection measures
- Risk = Hazard x Vulnerability x Exposition; Statistical quantities
- **Disaster** (Risk): Societal & Individual Components, Risk awareness
- Almost every year disasters triggered by extreme natural events cost many lives (not in Germany!) and lead to high economic losses
- Disasters tend to increase in terms of: Numbers & Losses
- Contributing factors of **global change**:
 - socio-economic changes, technical development, climate change
- Integrated Risk Management necessary, will become even more important for the future

More about CEDIM: www.cedim.de

Thank you for your attention!