AI for climate and weather predictions
- type: Praktikum (P)
- chair: ITI Nowack
- semester: WS 25/26
-
time:
Wed 2025-10-29
11:30 - 13:00, weekly
50.20 Raum 148
50.20 Ergänzungsbauten am Ring - Hauptgebäude (1. Obergeschoss)
Wed 2025-11-05
11:30 - 13:00, weekly
50.20 Raum 148
50.20 Ergänzungsbauten am Ring - Hauptgebäude (1. Obergeschoss)
Wed 2025-11-12
11:30 - 13:00, weekly
50.20 Raum 148
50.20 Ergänzungsbauten am Ring - Hauptgebäude (1. Obergeschoss)
Wed 2025-11-19
11:30 - 13:00, weekly
50.20 Raum 148
50.20 Ergänzungsbauten am Ring - Hauptgebäude (1. Obergeschoss)
Wed 2025-11-26
11:30 - 13:00, weekly
50.20 Raum 148
50.20 Ergänzungsbauten am Ring - Hauptgebäude (1. Obergeschoss)
Wed 2025-12-03
11:30 - 13:00, weekly
50.20 Raum 148
50.20 Ergänzungsbauten am Ring - Hauptgebäude (1. Obergeschoss)
Wed 2025-12-10
11:30 - 13:00, weekly
50.20 Raum 148
50.20 Ergänzungsbauten am Ring - Hauptgebäude (1. Obergeschoss)
Wed 2025-12-17
11:30 - 13:00, weekly
50.20 Raum 148
50.20 Ergänzungsbauten am Ring - Hauptgebäude (1. Obergeschoss)
Wed 2026-01-07
11:30 - 13:00, weekly
50.20 Raum 148
50.20 Ergänzungsbauten am Ring - Hauptgebäude (1. Obergeschoss)
Wed 2026-01-14
11:30 - 13:00, weekly
50.20 Raum 148
50.20 Ergänzungsbauten am Ring - Hauptgebäude (1. Obergeschoss)
Wed 2026-01-21
11:30 - 13:00, weekly
50.20 Raum 148
50.20 Ergänzungsbauten am Ring - Hauptgebäude (1. Obergeschoss)
Wed 2026-01-28
11:30 - 13:00, weekly
50.20 Raum 148
50.20 Ergänzungsbauten am Ring - Hauptgebäude (1. Obergeschoss)
Wed 2026-02-04
11:30 - 13:00, weekly
50.20 Raum 148
50.20 Ergänzungsbauten am Ring - Hauptgebäude (1. Obergeschoss)
Wed 2026-02-11
11:30 - 13:00, weekly
50.20 Raum 148
50.20 Ergänzungsbauten am Ring - Hauptgebäude (1. Obergeschoss)
Wed 2026-02-18
11:30 - 13:00, weekly
50.20 Raum 148
50.20 Ergänzungsbauten am Ring - Hauptgebäude (1. Obergeschoss)
-
lecturer:
TT-Prof. Dr. Peer Nowack
Dr. Mozhgan Amiramjadi - sws: 2
- lv-no.: 2400064
- information: On-Site
| Content | Content: Students will learn how to work with state-of-the-art AI models for climate science and weather forecasting. For example, typical AI models will include recent releases of · Foundation models for climate science and weather forecasting. · Generative AI models for tasks such as ensemble generation of weather forecasts and of climate change simulations for uncertainty quantification. · Transformer and graph neural network models for weather forecasting. · Climate model emulators. Each student will be able to select from a variety of topics to explore in their practical experiments. These could include, but are not limited to: · The representation of physical concepts in data-driven AI models (e.g., does the model indirectly learn to “understand physics”?). · Detecting and understanding failure modes of AI models. · Forecast accuracy and uncertainty quantification for AI-generated ensembles of simulations. · Effective solutions to post-processing AI results and/or to modifying AI model architectures. · Assessing if certain AI architectures perform significantly better for specific tasks. Workload: In-person introductory session, individual and group meetings, final presentation sessions: 30h Practical tasks – getting started, implementation, experiments, analysis: 100h Write up results in the style of a scientific paper and preparation of final presentation: 50h
|
| Language of instruction | English |